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SUMMARY 

Boundary value problems for Stokes and Navier-Stokes equations with non-standard boundary conditions are 
studied. Included is the case where the pressure or its normal derivative is given on some part of the boundary or 
the pressure is given up to a constant but given velocity flux. First, a variational formulation is introduced which is 
shown to be equivalent to the Stokes equations with the non-standard boundary conditions under consideration. 
The existence and uniqueness of the solution of the variational problem are studied. Secondly, most of the results 
obtained for the Stokes equations are extended to the case of the Navier-Stokes equations. The final section is 
devoted to numerical experiments, flows in pipes and physiological flows. 
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1. NTRODUCTION 

This paper is concerned with the stationary Stokes and Navier-Stokes equations with non-standard 
boundary conditions. Specifically, the case where the pressure is given on some part of the boundary 
will be considered. 

To be precise, the flow of a viscous incompressible fluid which occupies a bounded domain R of R3 
is studied. The velocity u and pressure p are assumed to satisfy in this domain R either the stationary 
Stokes equations 

-vAu + V p  = f in R ( la)  

V - u = O  i nR  (1b) 
or the stationary Navier-Stokes equations 

-vAu+ ( u  V ) u + V p  = f inR 

V . u = O  i n n  
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In both cases v is positive and denotes the kinematic viscosity of the fluid and f denotes the density of 
the external forces. We do not consider the time-dependent problem, but all the results extend to the 
operator found after a time discretization, i.e. when -vAu is replaced by (1/6t)u - VAU. 

As regards the boundary conditions, they are assumed to be of three different types. 

1. 
2. 

3. 

The velocity is given on a portion r, of the boundary of R. 
The pressure and the tangential component of the velocity are given on a second portion r2 of 
the boundary. 
The normal component of the velocity and the tangential component of the vorticity are given on 
the remainder of r3 of the boundary. 

In the case of the Stokes problem (1) these boundary conditions read 

u = uo o n r , ,  (34  

u x n = a x n  and p=po o n r 2 ,  (3b) 

u - n = b . n  and ( V x u ) x n = h x n  onr3 ,  (3c) 
where uo, a, po, b and h are given functions and n denotes the unit outward normal to the boundary of 
R. The data must be compatible so that there exists at least one solenoidal vector which satisfies them. 

In the case of the Navier-Stokes problem (2) the boundary conditions read 

U = U O  o n r l ,  (44  

(4b) 

u . n = b - n  and ( V x u ) x n = h x n  onr3 .  (4c) 

2 u x n = a x n  and p+$luI =PO o n r 2 ,  

Note that in the Navier-Stokes problem the dynamic pressurep + $ 1uI2 plays in (4b) the role played by 
the static pressurep in (3b) for the Stokes problem. Condition (4b) is involved in the special variational 
formulation of the Navier-Stokes equations. Using the usual variational formulation with the method 
of characteristics, the static pressure condition is used (see Remark in Section 4.2.2). A possible 
application of the above set of boundary conditions associated with a pipe flow is given in Table I. 

Moreover, it will be shown in Section 2.7 that for the Stokes problem the normal derivative of the 
pressure on r3 can be computed explicitly directly from the data of the problem; for the Navier-Stokes 
problem the normal derivative of the pressure on r3 depends both on the data and on the velocity itself 
(see Section 3.3). 

In our analysis po may also be known only up to a constant, a different constant on each connected 
component TZi of r2; in such cases the fluxes J u * n must also be given. 

TZI 

Table I. A family of simultaneously applied boundary conditions in a pipe flow, the domain boundary being 
partitioned into three parts for (1) a Dirichlet condition, homogeneous or not, (2) a pressure condition and (3) a 

velocity condition, for a well-posed problem (t special variational formulation) 

Boundary Conditions Duct flow application 

l - l  u = o  
l-: u = uo 

No-slip 
Injection velocity 

u x n = a x n andp = p o  

u.n = b.n and A x u x n = h x n 

Pressure condition at tube exit, with an unknown velocity 
distribution (monodimensional flow, a = 0) 
Jet (dye) (1D (h = 0) or 3D (bend output)) 

2 
r2 

o r p + f l u l  =pot 
l-3 
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Such problems can be found in many circumstances such as pipe flows. If a pipe bifurcates into two 
pipes, then conditions on p andor conditions on fluxes are inevitable in order to monitor the amount of 
fluid that flows in each pipe. For want of better conditions, engineers have often replaced the 
conditions on the pressure by a condition on the normal stress p - vn - (Vu + VuT)n. If there are no 
boundary layers, then the two conditions are close to each other when v is small. This last condition is 
not suitable for pipe flows, where a boundary layer develops rapidly. 

There exists a considerable literature concerning the Stokes and Navier-Stokes equations with a no- 
slip boundary condition (see e.g. the books by Lions,' T d  and Temam3). Other boundary 
conditions for the Stokes and Navier-Stokes equations (no stress and slip at the boundary) have been 
recently studied.48 This paper is a summary, stripped of most technical considerations, of a more 
mathematical paper.' It contains, however, more numerical results than Reference 9. 

The present contribution to the study of problems ( l ) ,  (3) and (2), (4) is threefold. Firstly, variational 
formulations of both problems are given and these are proved to be equivalent to the boundary value 
problems considered. Secondly, existence and uniqueness are proved for these variational problems. 
Existence and uniqueness results are also important, because this is the only way to make sure that one 
has a complete set of boundary conditions (not too few and not too many). Thirdly, a finite element 
discretization is given for which a classical error estimate applies. As usual, the discretization is given 
in a space which approximates the solenoidal vectors. Therefore it can be solved in practice by using 
the velocity-pressure formulation; the pressure is the Lagrange multiplier of the divergence-free 
constraints on the test functions of the finite element space. 

Finally, some numerical examples are given which prove that the method is feasible. 

2. THE STOKES EQUATIONS WITH BOUNDARY CONDITIONS INVOLVING 
THE PRESSURE 

2.1. Formulation of the Stokes problem 

{r,, r2, r3}, each with a finite number of connected components, such that 
The boundary r of R is assumed to be made of three smooth* subsets, which we denote by 

T I #  0, (54  

rinrj=@ V i , j = l ,  2, 3 ,  i f j ,  (5b) 

(5c) r = rl u r2 u r3. 
We will denote by r2,, . . . , r2r the connected components of r2. 

We shall assume some smoothness for f, po and ht and a compatibility condition for the boundary 
conditions which says that there exists at least one incompressible velocity field which satisfies them. 

There exists a hnction Uo E H1(R)3 such that: 

V . U o = O  i n n  ( 6 4  

Uo = u0 o n r l ,  (6b) 

Uo x n = a x n on r2, (6c) 

U o * n = b . n  onr3 .  ( 6 4  
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In addition, po must be defined up to an additive constant. The restriction ofpo to the ith connected 
component of T2 will be denoted by poi, i.e. 

poi =poIr2,, i = 1, .  . ., r.  (7) 

2.2. Functional framework 

We assume that the reader is somewhat familiar with the space of square integrable functions L2, the 
Sobolev space H' of square integrable functions with square integrable derivatives and its subspace Hh 
of functions with zero restrictions on boundaries. As usual %$ denotes the space of p-continuously 
differentiable functions with compact support. Let us introduce the functional spaces 

V = {v E H 1  (R)3 IV . v = 0 in R, v = 0 on rl ,  v x n = 0 on l-2, v . n = 0 on rj}, (8) 

v o * n d s = O  V i = l ,  ..., r .  I (9) 

The non-homogeneous analogues are defined for any function w of by 

V(W) = {v E H I ( R ) ~ I V  * v = o in Q, v - wlr, = 0, v - w x nlr, = 0, v - w * nlr, = 0 1  (10) 

and for any vector F = {F;};= such that Fi = 0 by 

VO(W, F) = vo E V(w) vo - nds = Fi . (11) { IL I 
Let a(.;) be the bilinear continuous form 

a(u,  v)  = v S ,  (V x u) - (V x v)dx ~ u ,  v E ~ ' ( ~ 1 3 .  (12) 

2.3. Variational formulation of the problem: existence and uniqueness results 

Let us consider the variational problem 

find u E H'(R)3 such that 

u - U O E  V ,  

a(u, v)  = L(v) Vv E V ,  

where 

L(v) = f * vdx + v l, (h x n) - vds - pov * nds Vv E H'(!2)3 .  J,, 
Remark 1 

It is not necessary to know UO explicitly, because condition (13b) can be replaced by 
u E V(U0). 0 

Since the bilinear form a(*, .) is V-elliptic and since L(.) is a linear form which is continuous in C: the 
Lax-Milgram lemma yields the following. 
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Theorem 1 

The variational problem (13) has one and only one solution. 0 

Remark 2 

If rl is empty, then the bilinear form may not be V-elliptic. This case has been studied in 
Reference 9. 0 

2.4. Equivalence between the boundary value problem and the variational problem 

following. 
To establish the equivalence between problems (l), (3) and (13), we shall begin by proving the 

Theorem 2 

If u E V2(fi) andp E V‘ (a) are classical solutions of the boundary value problem (I), (3), then u is 
a solution of the variational problem (13). 

Proof: This is done in the usual way. Multiplying equation (la) by v in 
using (1 b) and the identity 

integrating by parts in R and 

-Au = V x (V x U) - V(V * u), (15) 

we obtain 

(V x u) * (V x v)dx = x u) x n] - vds - 

which, using the fact thatp = po on r2 and (V x u) x n = h x n on r3, implies that u verifies (13c). 
Furthermore, using the fact that u is of class W2(fi) (which implies that u E we deduce from 
(Ib), (3) and (6)  that (u - Uo) belongs to i! Thus u is a solution of (13). Theorem 2 is therefore 
proved. 0 

Reciprocally, we have the following. 

Theorem 3 
Let u be a solution of the variational problem (13). Then it has enough regularity* for (V x u)lr to 

be well defined and there exists a smooth function p t  defined up to a constant such that u and p are 
solutions of the boundary value problem (I), (3) in the distribution sense. 

Proof: Let u be a solution of problem (13). The fact that u - Uo belongs to Vand that Uo verifies (6 )  
implies that u satisfies equation (1 b) in the sense of distributions in R and it also implies that u verifies 
(3a) and the first parts of the boundary conditions (3b) and (3c) in the sense of the traces of functions 

Now let us take a smooth divergence-free fkction v as test function in (1 3c). Using the definition of 
of H ’ ( R ) ~ .  

a distribution derivative, we have 

s, [VV x (V x u)] vdx = f * vdx vv E q(q3; V - v = O  inR. s, 
* It belongs to H(A, Q)3, where H(A, Q)= { q  E L 2 ( 0 )  I Aq E L Z ( 0 ) } ;  the functions of H(A, Q) have traces on r which belong 
to fr”’(r). 
t P E H(4 QP. 
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Since the boundary r of R is locally Lipschitz, it follows from Theorem 1.2.3 on p. 25 of Reference 10 
(see also Reference 3, Remark 1.1.9, p. 19) that there exists p E L2(R) defined up to a constant such 
that 

in the sense of distributions. This proves (la). Moreover, applying the divergence operator to equation 
(1 6), we obtain 

vv x (V x u) + v p  = f (16) 

Ap = V - f .  

vA(V x U )  = -V x f .  

(17) 

(18) 

On the other hand, applying the rotational operator on both sides of (1 a), we have 

However, f being smooth enough (see footnote on p. 269;) then (17) and (18) imply that p and 
V x u are smooth in the sense of the footnote on p. 271. Moreover, multiplying (16) by v in 
integrating by parts in R and using (13c), we are led to 

~ [ V V  x (V x u) + V p ] . v & -  v x u ) . ( V  x v ) d x =  -v 

for all v E K 
The second parts of the boundary conditions (3b) and (3c) are implicitly contained in (19). To 

interpret them, we must be able to integrate by parts the first term on the left-hand side of (1 9). This is 
not possible a priori because of the lack of regularity of u and p .  However, if we assume that u is 
smooth,* then using the regularity o f f  (see footnote on p. 269) and (16), we havep in H’(R) and we 
can therefore integrate this term by parts. We obtain 

[(V x u) x n] - v d s +  p v  - nds = - v l l  (h x n) * v d s + 1 2 p o v .  nds Vv E V .  
-v s,, 

Taking in this expression test functions which are zero on rl and r2, we get (3c). Next we get (3b) 
by taking test functions which are zero on TI and r3 and using the fact that s,, v - nds = 0 for all 

0 v E l! This completes the proof of Theorem 3. 

2.5. Computation of the fluxes of the velocity on the connected components of r2 
It can be shown’ that there exists r - 1 functions of V satisfying 

z ; . n d s = S j j ,  j =  1 ,..., r -  1,  J,, zi - rids = - 1. 

Then for i = 1,. . ., r - 1 let woi be the solution in Vo of 

a(woi, V O )  = -a(zi, V O )  VVO E Vo. 

Finally define 
0; = 0 0 1  + z;. 

It can be shown that { o ; } ~ ~ ~  form a basis of the space of functions v E V which satisfy a(v, vo) = 0 

In what follows we shall denote by ej the flux of Uo through r2,, i.e. 
for all vo E Vo. 

* For instance, if V x (V x u) E L’(l2)’ 
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Proposition 1 

defined by 
If u is a solution of the variational problem (1 3) and if F2j is the flux of u through r2j, which is 

(224 

then 
r -  1 C (F2j - F;.)u(w;, ~ j )  = L ( w ~ )  - a(U0, w;)  Vi  = 1, .  . ., r - 1. (22b) 
j =  1 

Prooj Taking v = W ;  in (13c), we have 

Q ( U ,  mi) = L ( W i ) ,  

a(u - uo, W i )  = L ( 0 i )  - a(U0, W i ) .  

which implies 

On the other hand, since the W ;  form a basis, 
r -  I 

u - Uo = vo + C (F2j - F’;.)w~, 
j=  1 

with vo E VO. Since a(v0, 0;) = 0, upon combining the two identities, we get (22). Proposition 1 is 

It is easy to verify that the coefficients a(o;, w,) which intervene in formula (22b) define a 
symmetric matrix that is positive definite. Thus this formula allows the direct computation of the fluxes 
F21, . . ., F z ( ~ -  of u through the first r - 1 components of r2. It can be noticed that the flux F2,. of u 
through r2r is completely determined by the fluxes F2,,  . . . , F2(r-l) ,  the incompressibility condition 
(lb) and the boundary conditions (3). Indeed, we have 

thus proved. 

2.6. The Stokes equations with prescribedjuxes on the connected components of r2 

Let us consider the following variant of the boundary problem (l), (3): find functions u, p and 
constants C1, . . . , Cr defined up to an additive constant (i.e. we are looking for the differences 
Ci - C, for i = 1, . . . , r - 1) such that 

u = uo on rl, (244 

u x n = a x n  onr2, (24b) 

p =po i  + C; on l-2i V i  = 1 , .  . ., r ,  (24c) 

u . n = b * n  onr3 ,  (244 

( V x u ) x n = h x n  onl-3, (24e) 

u ~ n d s = F 2 ~  V j =  l , . . . ,  r ,  
Jr, 
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where v, f, uo, a, PO,  b, h and the fluxes F21,  . . . , F2, are given. It can be remarked that the only 
difference between this new boundary-value problem and the boundary-value problem (l), (3) is the 
fact that while in (l), (24) the fluxes are included within the data and the constants Ci are unknowns, in 
problem (l), (3) we have the opposite situation. 

Integrating (1 b) by parts in R, we see that a necessary condition for (l), (24) to possess a solution is 
that the global flux through r be zero, i.e. 

r 

Uo - nds + + 
j= 1 

which we will assume fulfilled. Indeed, we will suppose that the prescribed fluxes are F1, . . . , F,- 1 

and that F2, is given in such a way that (25) holds. 
The formulation of the problem is 

find u E Vo(U0, F) such that 
a(u, VO) = L ( V 0 )  Vvo E vo. 

Notice again that it is not necessary to know UO explicitly. 
For theoretical purposes it is more convenient to work with the following equivalent formulation: 

find u E H'(R)3 and constants C I ,  . . . , C, (defined up to an additive constant) such that (26a) 

u - u1 E vo, (26b) 

a(u, vo) = L ( V 0 )  Vvo E vo, (26c) 
r -  1 

Ci - C, = L(wi) - a(U0 , wi) - (F2/ - F i . ) a ( o i ,  oj) Vi = 1 , . . ., r - 1 , (26d) 
j =  1 

where Yo is defined by (9), L(- )  is defined by 

L(v) = b f  vdx+ "1, (h x n) - v d s -  pov. nds Vv E IY'(R)~ s,, (27) 

and U1 E H ' ( 0 ) 3  is defined by 

j= I 

Theorem 4 

The variational problem (26) has one and only one solution. Its interpretation is none other than the 
boundary-value problem (l), (24). 0 

2.7. Computation of the normal derivative of the pressure on r3. 
In this subsection we will go back to problem (l), (3). We shall prove that for regular boundaries* 

the normal derivative of the pressure on r3 can be explicitly calculated from the data of problem 
(11, (3). 

* r of class Y'.' 
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We denote by X the space of smooth functions with zero values on rl and r2, defined by 

X = {$ E H2(R)14 = 0 on rl u r2}. (29) 
Let u be a solution of the variational problem (13) and let p be the corresponding pressure. 

According to what was seen in the proof of Theorem 3, it is clear that u and p satisfy the equations 

vv x (V x u) + vp = f ,  (30a) 

A p = V . f  (30b) 
in the sense of distributions in R. Therefore, if 4 E X,  multiplying (30a) by A 4  and (30b) by 4, we 
obtain s, [VV x (V x u) + Vp] . v4dx = f - v4dx v4 E X ,  s, 

The identities (3 1) implicitly contain the property ofp  that is of our interest. To interpret it, we need 
to integrate by parts the left-hand-side terms of (31a) and (31b). To this end we shall assume that 
V x (V x u) is square integrable. This implies that Vp is also square integrable and we can therefore 
use Green’s formula in the left-hand-side terms of (31). We obtain 

x u) x n] - vcjds+ S,vp - v4dx = J , f -  v+ix ~4 E X ,  (32a) 

Then 

Definition 1 

divergence of g the distribution V, * g defined by* 
Let g be a vector-valued function on r that verifies g - nlr = 0. We shall call the tangential 

where 4 E H 2 ( Q  is any extension of cp to R. 0 

Remark 3 

For a smooth function g defined in fi with values in R3 and satisfying g “1,- = 0, an explicit 
computation (see e.g. Reference 11, Lemma 4.9 or Reference 12, Section 4) shows that 

* Precisely, g is a distribution of K”2(r)3 with V, * g E K3’2(r) and the variational equation is for all 4 E H3’2(13. 
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Going back to (33), it follows that 

V$ EX. 

Now let us consider a smootht function $ whose restriction to r is zero everywhere except on r3. 
The boundary condition (3c) says that (V x u) x n = h x n on r3 and it then follows fkom (36) that 

Thus we have proved the following. 

Proposition 2 

satisfies the boundary condition* 
If u is a smooth solution of the variational problem (1  3), then the pressure p associated with u 

- = f - n - vVI - (h x n) 
dn 

on r3. 

3. THE NAVIER-STOKES EQUATIONS WITH BOUNDARY CONDITIONS INVOLVING THE 
PRESSURE 

In this section we will extend some of the results of Section 2 to the case of the Navier-Stokes 
equations. We will successively study two versions of the Navier-Stokes problem associated with (l), 
(3) (first, with homogeneous boundary conditions on the velocity; secondly, with non-homogeneous 
conditions). 

3.1. Description of the Navier-Stokes problem 

boundary conditions (4). To study problem (2), (4), we consider its variational formulation 
In this subsection we are interested in studying the (stationary) Navier-Stokes equations (2) with the 

find u E H 1 ( i 2 ) 3  such that 

u-UOE v, 
a(u, v) + b(u, u, v) = L(v) Vv E V ,  

where the trilinear form b(.;;) ,  is defined by 

b( . ,  ., *) : H 1 ( i 2 ) 3  x H ’ ( i 2 ) 3  x H1(R)3 + R, 

[(V x U) x V] wdx VU, v, w E H’(i2)3.  

Theorem 5 

There exists v*, a function of the data of the problem, such that if v > v*, then problem (39) has one 
and only one solution. 0 

t 4 E H2(fi). 
* As elements of H-”*(r,). 
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Theorem 6 

If u in q2(Q) andp in %‘(a) are classical solutions of the boundary-value problem (2), (4), then u is 
0 

Reciprocally, we have the following. 

a solution of the variational problem (39). 

Theorem 7 

Let u be a solution of the variational problem (39). Then there exists p E L2(Q) defined up to a 
constant such that u and p are solutions of the boundary-value problem (2), (4) in the sense of 
distributions. 

Proof: Let u be a solution of problem (39). First note that (39a) and (39b) imply (2b) and the Dirichlet 
boundary conditions on u. On the other hand, taking divergence-free functions in %r(Q)3 as test 
hnctions in (39) and using the definition of distribution derivative, we conclude that 

s, vv x (V x u) + [(V x u) x u] - vdx = f vdx vv E %7J(q3, s, v . v = o ,  

which implies that there exists a q in L2(Q) defined up to a constant such that (see Reference 10, 
Theorem 1.2.3, p. 25) 

vv x (V x u) + (V x u) x u + vq = f .  

P = 4 - 414 

vv x (V x u ) +  (V x u) x u + p l u l 2 + v p =  f .  

Then we put 
2 

and thus we have 

(41) 

However, V - u = 0, so we deduce from (1 5 )  that 

-vvu + (u * V)u + v p  = f 

in the sense of distributions in R. Moreover, multiplying (41) by a test function v in Vand using (39c), 
we obtain by difference 

/ [vv x (V x u) + (V x u) x u + v(p + flu”)] . vdx - v s, (V x u) . (V x v)dx 
R 

[(V x u) x u] - vdx = - v 1 3  [h x n] - vds+ l 2 p o v  - nds Vv E V .  (43) 

As in the linear case, the identity (43) implicitly contains the second parts of the boundary 
conditions (4b) and (4c). If V x (V x u) and (V x u) x u are square integrable, we deduce from (41) 
that (p + flul’) belongs to H’(SZ), and integrating by parts the left-hand side of (43), we obtain 

Taking in this identity test functions v with compact support in r3, we get (4c). Next, (4b) follows 
easily if we take test fimctions with compact support in r2 and we use the fact that the normal trace of 

0 the functions of V have zero mean value on r2. Theorem 7 is therefore proved. 
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3.2. The Navier-Stokes equations with prescribed fluxes on the connected components of l-2 

As for the linear case, we will also study the following variant of the Navier-Stokes problem (2), (4): 
find u, p and constants CI, . . . ,Cr defined up to an additive constant (i.e. we are looking for the 
differences Ci - C, for i = 1, . . . , r - 1) such that 

u = uo on rl ,  (444 

u x n = a x n  onl-2, (44b) 

(V x u )  x n =  h x n onl-3, (44e) 

u - n d s = F z j  V j =  l , . . . ,  r ,  L2, (44f) 

where v, f, UO, a, PO, b, h and the fluxes Fzl, . . . , F2, are the problem data. 
Setting 

PO; =poi + Ci, i = I , .  . ., r,  (45) 

and using Theorem 6, it is a straightforward matter to show that if u E W2(fi), p E %?'(a) and 
C1, . . . , C, are classical solutions of problems (2), (44), then u and the constants C,, . . . , C, are 
solutions of the variational problem 

find u E H' and constants CI , . . ., C, (defined up to an additive constant) such that (46a) 

a(u, VO) + b(u, u, VO) = ~ ( V O )  VVO E VO. (46c) 

Reciprocally, if u and CI, . . . , C, are solutions of (46), definingpo by (45), it is easy to check that u 
is a solution of the variational problem (39). According to Theorem 7, there then exists p E L2(Q) 
defined up to a constant such that u is a solution of (2), (44). On the other hand, u satisfies the flux 
conditions (44f), since u - U1 belongs to Vo and condition (25) is verified. 

This proves that (46) is a variational formulation for the boundary-value problem (2), (44). As 
regards the existence and uniqueness of a solution of this problem, we can prove that if either v is 
sufficiently large relative to the data or the data are small enough with respect to v, then problem (46) 
admits one and only one solution. 

3.3. Computation of the normal derivative of the pressure on r3 
In this subsection we aim at extending formula (38) (Proposition 2) to the non-linear case. In 

contrast with the Stokes case, for the Navier-Stokes equations this formula depends on the solution as 
well as on the problem data. 
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Proposition 3 

If u is any smooth* solution of the variational problem (39), then p + #uI2 satisfies the following 
boundary condition on r3, 

d 
- (p + $ 1 ~ 1 ’ )  = [f - (V x u) x u] * n - vV, - ( h  x n), 
dn 

in the sense of distributions,+ where V,.(h x n) denotes the tangential derivative of h x n on r3 (see 
Definition 1). 

(47) 

Prooj Let u be a smooth solution of problem (39) and let p be the corresponding pressure. According 
to Theorem 7, u and p satisfy 

vv x (V x u) + (V x u) x u + v(p + +\’) = f .  (484 

Thus, applying the divergence operator on both sides of this equation, we have 

A p + - I u I  = V * [f - (V x U) x u]. ( ’> 
From this it follows that 

s, A(p + $IuI2)4 = V - [f - (V x u) x 1114 V 4  E X ,  s, (49b) 

where Xis the space defined by (29). Now we can follow step by step the proof of the linear case, but 
replacing f by f - (V x u) x u and p by p + $u1’. This completes the proof of 
Proposition 3. 0 

4. NUMERICAL RESULTS 

The aim of this section is to present some numerical experiments concerning the approximation of one 
of the Navier-Stokes boundary-value problems which have been studied in Section 3. These numerical 
results are relative to flows in a network of pipes and flow around an obstacle in a pipe. In both cases 
we have r3 = 0, uo = 0 and a = 0 (i.e. homogeneous boundary conditions on the velocity). 

4.1. Two-dimensional results 

4.1.1. Brief description of the numerical method. The numerical method which we use as an operator- 
splitting method with a 8-scheme as proposed and developed by Glowinski for the Navier-Stokes 
problem (see Reference 13, Chapter VII). Therefore at each step of the algorithm we solve first a 
Stokes-type problem, next a non-linear convective problem and then again a Stokes-type problem. This 
scheme has a time truncation error of O(lAt1’) and appears to be unconditionally stable. The non- 
linear problem is solved at each time step by a least squares conjugate gradient method. On the other 
hand, to solve the Stokes-type problems, we use a variant of the splitting method of Glowinski and 

* V x (V x u) E L2(Q)3, (V x u) x u E L*(Q)’ and V * [(V x u) x u] E L2(Q). 
t In H - ~ / ~ ( I - ~ ) .  
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PironneauI4 (see also Reference 13, Chapter VII; for variants of this method, including the case of 
boundary conditions involving the pressure, see Reference 15). 

4.1.2. Discretization in space. Next we consider the space approximation of the time-dependent 
problems associated with ( l ) ,  (3) and (2), (4). For simplicity we suppose that R is a bounded polygonal 
domain of R2 and we introduce a classical triangular z h  ofR consisting of a finite set of triangles. We 
define a new triangulation zh12 from zh by subdividing each triangle T E zh into four subtriangles (by 
joining the mid-sides of T). The pressure is approximated by piecewise polynomial functions which 
are continuous on each triangle of z h .  To approximate the velocity, we also use Lagrange finite 
elements. The discrete velocities are continuous functions which when restricted to each subtriangle 
T E ?h are polynomials of degree one. 

4.1.3. Numerical results 

Flow in a network of pipes 
Let us consider a bidimensional network of pipes whose shape looks like a T (such a network will be 

called a T-shaped pipe network). The lateral surfaces of the pipes constitute the portion rl. r2 has three 
connected components: the inflow section r21, which is located at the bottom of the T, and two outflow 
sections r2* and r 2 3 ,  which are located at the two extremes of the horizontal branch of the T. The 
Navier-Stokes equations were solved numerically with the data 

v = 0.025, f = 0, po  = Cj on r2;, i = 1 ,  2 ,  3. 

Figure 1 shows the computed solution correspondong to the case where the pressure differences are 
given by the values 

CI - c2 = c1 - c3 = 2. 

We have drawn the velocity field as well as the isobaric and isorotational lines. The flow is naturally 
symmetric. Figure 2 shows another numerical result in which the symmetry on the data was broken by 
setting 

c1 - c, = 4 > c1 - c3 = 2. 
(a) velocity field 

Figure 1 .  Velocity in a two-dimensional T-shaped bifurcation at Re = 40 when the pressure is imposed on the inlet and outlet 
boundaries; C, - C, = C, - C, = 2 (computed by C. Begue) 
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(a) velocity field 

(c) lac-rotational lines 

28 1 

Figure 2. Same as Figure 1 but with C, - C, = 4 > C, - C3 = 2 (computed by C. Begue) 

Flow in a pipe around an obstacle 
In this second example the flow take place in the straight section between two parallel plates. 

Equidistant from both there is a cylindrical pipe with generating lines parallel to the plates. rl consists 
of the boundary of the sections of the pipe and of the plates. r2 has two connected components: the 
inflow part r21 and the outflow part r22. The bidimensional Navier-Stokes equations were solved with 
the data 

v = 0.025, f = 0, Po = c1 on r21, Po = c2 on r22, 

where the Ci are constant. Setting C = C, - C2, Figure 3 shows the computed solutions corresponding 
to the three values 

c= 1, c = 2, c = 3. 

In each case we have drawn the velocity field and the isorotational lines. We can observe that as the 
pressure difference C increases, the two vortices behind the cylinder get longer and the profile of the 
outflow velocity becomes more and more perturbed by the presence of the pipe. In particular, it 
becomes very different from the parabolic profiles obtained in a Poiseuille flow without any obstacle. 
Figure 4 shows the value of the flux F22 = -F2, = sr,, u . nds as a h c t i o n  of C for C between 0 and 
3.5. 

4.2. Three-dimensional results 

4.2.1. Physiological flows. Applications of imposed pressure boundary conditions may be found in 
biomechanics. The tracheo-bronchial tree and the arterial tract are characterized by numerous sites of 
curvature and branching. The flow is thus three-dimensional and never fully developed. Simple models 
are necessary to determine the main features of the flow in such a complex geometry. Numerical 
simulations of physiological flows, once validated, are developed to assess the temporal and spatial 
variations of the parameters of interest, mainly the velocity field. Furthermore, the effect of governing 
factors is easily studied, other quantities remaining constant. However, any theoretical model deals at 
best with pressure boundary conditions rather than velocity conditions only, owing to the developing 
nature of the flow. 



282 C. CONCA ET A L  

(a) velocity field 

c =  1 

c = 2  

c=3  

(b) Iserotational lines 

Figure 3 .  Flow around a cylinder in a channel (computed by C. Begue). A pressure difference C is imposed at both ends of the 
channel. Thus the velocity at the outlet is a result of the computation. Re = 40 

Figure 4. Variation in the flux across the channel corresponding to Figure 3 when C vanes (computed by C. Begue) 
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Steady flow is always the first reference step of any study. However, physiological flows are 
unsteady with respect to both time and wall motion. Pressure boundary conditions are thus essential. 

A uniform pressure setting at the inlet and outlet of the pipe network avoids any a priori knowledge 
of the fluid velocity. 

Two examples of 3D flow illustrate numerical simulations performed with imposed pressure at the 
outlet and/or inlet sections of the fluid domain. The first example deals with steady flow in a model of 
the aortic bifurcation, which includes a tapered transition zone. The second example concerns 
oscillatory flows in a 90" bend. In both examples the pressure was set to zero at the outlet stations 
located far downstream from the test section, taking into account the inertia effect. 

In the unsteady flow experiments, the inlet boundary condition was a time-varying pressure 
associated with a null cross-flow. 

4.2.2. Discretization. The equations to solve are 

dU 
- + u - V u - v A u + V p = O  and V . u = O  in Q x [ O ,  TI, 
at 

p = p i  onTi,  i = l ,  2 , . . . ,  N ,  

u x n = 0  onTi,  i = l , 2  ,..., N ,  

u = O  onI-0, 

where rl, r 2, . . . , T N  are the inlet or outlet boundaries and To represents the walls. 

Remark. A static pressure is imposed instead of a dynamic one. This is not supported by the theory, but 
this is a limitation of the theory rather than a mistake. Here at each time step we have a Stokes problem 
for which the theory applies. 

To discretize in time, we use the method of characteristics. Recall that this method consists of 
approaching the non-linear term of the equation by 

dU U"+'(X)  - u"(X"(x)) 
6t 

- + u * V u =  
dt I 

where 6t is the time step, U" is the velocity field at time t" = n6t and Y ( x )  is the position at time t " of 
the particle which is at x at time t " + I .  

The hnction X" is approached by integrating the ordinary differential system 

= u p q t ) ,  t ) ,  X(t"") = x 
dt 

using Euler's method (u; is the approximation of u" obtained at time level ndt) (see e.g. Reference 16). 
At each time iteration one must solve a PDE system of the generalized Stokes type 

1 
- u " - v A u + V p = f  and V . u = O  onQ, 
6t 

p = p i  onTi,  i = l ,  2 ,..., N ,  
u x n = 0  onTi, i = l , 2  , . . . ,  N, 

u = O  onTo,  
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Figure 5. Pressure map in a symmetric bifurcation (area ratio of 0.8, bifurcation angle of 70") at Re = 1200: left, in the whole 
centreplane; right, zoom on the transition zone and the entrance region of the branches. Equal pressures are imposed on the outlet 

boundaries 

which is approached by the numerical scheme 

where 

V h = { v h E & :  v h x n = O  o n r i ,  i = l  , . . . , N ;  v h = o  onro}, 

Q h o  = { q h  E h f h  : q h  = 0 On Ti, i = 1, .  . ., N } .  

Here x h  is the space of P' + bubble finite elements and Mh is the space of P' continuous functions, 
i.e. the degree of freedom of X h  are the values of v h  at the vertex and the barycentre of each tetra- 
hedron of the mesh and the degrees of freedom of Q h  are the values at the vertex (see e.g. Reference 
16). 

Figures 5 and 6 show the pressure variations in the centreplane of a bifurcation. The bihrcation pipe 
is composed of circular pipes, a parent tube (on the left of the figures) and two branches (on the right), 
and a transition zone in the middle computed by a smoothing spline (bifurcation angle of 70°, area ratio 
of 0.8). The Reynolds number based on the parent tube diameter and the mean velocity is equal to 
1200. In both cases a constant velocity profile was imposed at the inlet and atmospheric pressure on 
the outlet of the upper branch. In Figure 6 the pressure on the upper branch is equal to that on the lower 
branch. Figure 6 shows the effect of a pressure change in one branch of the bifurcation. The flow is 
blocked in the lower branch (the pressure is much larger. Flow separation occurs only in the first case 
(Figure 5 )  in the entrance region of both branches. 
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Figure 8. Axial velocity vectors in the centreplane of a time-dependent flow in a torus-shaped pipe. A sinusoidal wave pressure 
(frequency of 1 Hz) is prescribed at the inlet. Each view is separated by 0.1 s and the views are in the sequence left to right and 
top to bottom. The average Reynolds number equal 500 and the Stokes number R,,,k(o/v)”’ = 5.  Each vector shown corresponds 

to one vertex of the triangulation in the central plane 

The velocity vector of a three-dimensional flow can be decomposed into two components, one in the 
axial direction of the pipe and the other at right angles to the tube axis, the so-called secondary flow. 
Secondary flows are shown in Figure 7. Two kinds of secondary flows are observed, namely the 
source-sink cross-flow in the transition zone and the bend transverse motion in the branch.17 

The second set of numerical experiments is performed on a 90” bend; the curvature ratio is 1 : 10. 
The Reynolds number based on the tube diameter and the mean velocity is equal to 500. The pressure 
is imposed on both ends of the tube. The pressure difference is a sinusoidal wave in time, with 
Frequency equal to 1 Hz. Figure 8 shows axial velocity vectors in the curvature plane at four instants of 
time separated by 0-1 s before and after the change in direction of the flow in the tube centre. 

Before the complete change in direction the region of back flow near the inner wall is much wider 
than in a straight pipe of similar size, whereas near the outer edge it is narrower. Another interesting 
feature is the motion of the peak axial velocity from the inner to the outer wall. Such a property has 
been confirmed by experiments using nuclear magnetic resonance velocimetry. 
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